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Critical functions for complex analytic maps 

Stefan0 Marmit 
Dipartimento di Fisica, Universita di Bologna, INFN-Sezione di Bologna, Via Irnerio 46, 
40126 Bologna, Italy 

Received 3 October 1990 

Abstract. Critical functions measure the width of the domain of stability around a given 
fixed point or an invariant circle for complex analytic and area-preserving maps. We discuss 
their dependence on the rotation number of the invariant curves and we propose some new 
methods to determine them based on the existence of critical points and on some properties 
of quasiconformal maps. By means of the majorant series method some rigorous estimates 
are given for complex area-preserving maps like the semistandard map and the modulated 
singular map. In particular we make use of the Brjuno function to interpolate critical maps 
and we prove that the convergence of the Brjuno function is a necessary and sufficient 
condition for the existence of an analytic invariant curve of given rotation number. We 
also discuss the optimality of the rigorous bounds obtained. 

1. Introduction 

The dynamics of complex analytic mappings (endomorphisms of the Riemann sphere 
and complex area-preserving maps) has recently been intensively studied both by 
physicists and mathematicians. These dynamical systems are in fact interesting on their 
own and display many features of real Hamiltonian systems and area-preserving maps. 

Analytic maps exhibit quasiperiodic behaviour with non-trivial small-scale structure 
(Manton and Nauenberg 1983, Widom 1983, Mackay and Percival 1987) at the break- 
up of the invariant curves which locally foliate the complex plane around the fixed 
point (Siegel discs) or around an invariant circle (Herman rings). This phenomenon 
has also been observed in area-preserving (Shenker and Kadanoff 1982, Mackay 1983) 
and critical circle maps (Feigenbaum et a1 1982), and in the spectrum of certain almost 
periodic Schrodinger operators (Ostlund et a1 1982, Simon 1982). 

The question of the existence of an analytic conjugation to the linearised map 
leads to a small divisor problem which was solved by Siegel in 1942 who gave the first 
proof of convergence of a small divisor series. Siegel made use of the majorant series 
method and some delicate number-theoretical lemmas, and stressed the importance 
of Diophantine approximation. His ideas have been further developed by Riissmann 
(1967, 1972) and Brjuno (1971, 1972) who weakened the number-theoretical conditions 
on the rotation number needed in the convergence proof. The ideas of Siegel have 
recently been generalised and applied to Hamiltonian perturbation theory by Eliasson 
(1988, 1989) who succeeded in writing an absolutely convergent series expansion for 
the problem of the existence of quasiperiodic KAM orbits. 
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Today it is a well known fact that small divisors are the source of instabilities in the 
motions of Hamiltonian systems. From Kolmogorov-Arnol’d-Moser (KAM) theory one 
knows that most invariant circles are preserved under small perturbations of integrable 
maps. On these invariant circles the dynamics is analytically conjugated to translations 
with rotation numbers which are strongly irrational, so as to verify, for example, some 
Diophantine inequality. Numerical investigations (Greene 1979) and some rigorous 
results (Mather 1984, Mackay and Percival 1985) show that if the strength of the 
perturbation is large enough KAM circles disappear. 

The problem of obtaining accurate estimates of the breakdown threshold for an 
invariant circle of given rotation number is still basically unsolved, since one lacks a 
rigorous and computationally effective method. 

On the other hand it is generally believed that the value of the parameter at 
which the perturbation series for a given invariant circle diverges coincides with the 
breakdown threshold, and at least it certainly gives an extremely good lower bound. 

A related problem in the study of complex analytic maps is to give realistic estimates 
for the radius of convergence (Siegel radius) of the power series which conjugates a 
given map with a rotation around an irrational indifferent fixed point (Siegel disc) or 
to estimate the modulus of a Herman ring, i.e. a domain conformally equivalent to 
an annulus surrounding an invariant circle. Moreover, one would like to study the 
dependence of these quantities on the arithmetic properties of the rotation number 
(e.g. on the coefficients of the continued fraction expansion) and on the features of 
the given map (e.g. the sequence of the Taylor coefficients for a holomorphic map, 
provided some normalisation condition is fixed). The so-called critical functions in fact 
associate, for a given map, the breakdown threshold of an invariant circle with its 
rotation number. 

In this paper we study this problem for complex maps like polynomial and rational 
functions, the complex sine-circle map and two complex area-preserving maps intro- 
duced by Greene and Percival (198 1) and Percival and Vivaldi (1988) : the semistandard 
map (SSM) and the modulated singular map (MSM). 

Some recent advances in the study of the Siegel centre problem and Herman rings 
(Herman 1985, 1987a, Douady 1987, Shishikura 1987, Yoccoz 1988) together with the 
implementation of Brjuno analysis for the SSM and the MSM allow for a detailed study 
of the question raised above and for very accurate numerical algorithms for estimating 
critical functions. 

Even if the techniques used are rather specialised and exploit the analytical nature 
of the problem, some ideas and the spirit of the results should help the understanding 
of Hamiltonian systems. This is especially true if one believes that the basic nature 
of the problem is (at least in part) purely number-theoretical. Moreover, the majorant 
series method is commonly used also in the study of perturbation series in Hamiltonian 
and symplectic mechanics (Eliasson 1988, 1989, Giorgilli and Galgani 1985, Bazzani et 
a1 1989). 

We now summarise the paper. In section 2 we give some preliminaries about Siegel 
discs and the Brjuno condition to be verified by the rotation number for the existence 
of a Siegel disc. We also briefly describe a remarkable result due to Yoccoz (1988) 
who proves that the Brjuno condition is a necessary and sufficient condition for the 
existence of a Siegel disc. In section 3 we describe a new method for obtaining accurate 
estimates of the Siegel radius, and we prove a rigorous convergence estimate announced 
in Marmi (1988b, 1989) where the method was first used. The dependence of the Siegel 
radius on the rotation number and on the degree of the polynomial map considered 
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is numerically and analytically investigated. In section 4 we study Herman rings for a 
model rational map, the Blaschke fraction, and for the sine-circle map. In section 5 we 
study two complex area-preserving maps, the SSM and the MSM, and we prove that the 
Brjuno condition is a sufficient condition for the existence of an invariant circle with 
a given rotation number. The result concerning the MSM was announced by Malavasi 
and Marmi (1989). The problem of the optimality of the rigorous estimates proven is 
also briefly discussed. Finally in the appendix we show that the Brjuno condition is 
also a necessary condition for the existence of those invariant curves of the SSM which 
are discussed in section 5. 

2. Preliminaries: Siegel discs, Brjuno function and Yoccoz's theorem 

Let G denote the group of germs of holomorphic diffeomorphisms of (C,O), and let 
G, denote the set of germs f E G such that f'(0) = I E C* E C \ {0} (we recall that 
a germ of a function f analytic in some neighbourhood of 0, which we will denote as 
a germ of (C,O), is the equivalence class Lf] under the equivalence relation f - g if 
f = g in some neighbourhood of 0; for more details see Jones and Singerman (1987)). 
Associated with G and G, we have their formal analogues 6 and 6, given by the 
formal power series Cl: fkzk respectively with the condition that f l  # 0 and f l  = 2. 

We say that f E G, is linearisable if and only i f f  belongs to the conjugacy class of 
G which contains the rotation Ri. : z I+ Lz. Equivalently, f is linearisable if and only 
if the Schroder functional equation (Schroder 1871) 

f 0 Q, = Q, 0 R ,  (2.1) 

has a unique solution Q, E G,,Q,(z) = C l ! Q , k ~ k .  The problem of the existence of a 
formal linearisation Q, E e, is easily solved: a necessary and sufficient condition is 
A"' - 1 # 0 for all m 2 1, The coefficients Qk are recursively obtained in terms of those 
o f f  by matching powers in (2.1) : clearly '3, = 1 ,  and for all n 2 2 

j = 2  mi+ ...+ m,=n 

Whenever IIl # 1 the formal solution is convergent; thus each germ f E G, with 
IAI # 1 is linearisable (Poincari 1879). Ir, this trivial case there exists c > 0 such that 
13," - I1-I I c for all n, and the convergence of is easily shown by means of the 
majorant series method. 

= 1, i.e. ii = e2niw, w E R, if w is irrational then the formal solution exists 
but might well be divergent because of the occurrence of the small divisors (A" -A) 
in the recurrence (2.2) for the coefficients of @. In fact Cremer (1935) constructed a 
counterexample exhibiting a germ f i  E G, which has a sequence of periodic orbits 
under the iteration z,+~ = f,(z,) which accumulates at the fixed point z = 0. 

If Q, is convergent, f is linearisable and has a Siegel disc at z = 0 given by the 
maximal open connected neighbourhood U of z = 0 invariant under f and image 
under Q, of a disc D ,  := { w  E CI IwI < r } .  The Siegel disc is foliated into invariant 
manifolds conformally equivalent to circles with rotation number w (figure 1). 

If rs denotes the radius of convergence of the power series of Q,, then U = @(DrS)  
and rs is called the Siegel radius corresponding to f .  In fact Siegel (1942) proved that 

When 
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11 

Figure 1. Siege1 disc of the quadratic map z H eZnioz + 4 z 2  when o = (fi - 1)/2. 

if w E Dioph := {x E R \ Q13y > 0 , 3 p  2 2 such that Jw - p / q /  2 yq-” for all p , q  E 
2, q # 0}, then all the germs f E G,, where A = e2niw, are linearisable. 

Let [a,, a,, . . .] be the continued fraction expansion of w E R \ Q, recursively 
determined by aj = [ l /o j ]  and w j  = { l / ~ ~ - ~ }  for all j 2 1, where [ ] and { } denote 
the integer and fractional parts respectively, wo = w - [U] and a, = [U]. The partial 
fractions 

a2 + ___ 
. 1  
’ .  + - 

ak 

are given by 

for all k 2 0, with initial data qP2 = p - ,  = 1, q-, = p-2 = 0, and verify the inequality 
P k  = akPk-l + Pk-2 q k  = a k q k - l  + qk-2 

(2.3) 
1 

< (-l)k (. - :) < -. 1 

q k ( q k  + q k + l )  q k q k + l  
In terms of the growth of the qk, Cremer’s counterexamples were constructed under 
the assumption that 

whilst from Siegel’s Diophantine condition it follows that 

Brjuno (1971, 1972) showed this condition can be weakened; if 
log q k + l  = O(log qk). 

k=O 

then all germs f E G, are linearisable. 

necessary. 
Very recently Yoccoz has finally proved that the Brjuno condition is in fact also 
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Theorem (Yoccoz 1988). Let A = e2niw, w E R \ Q. All f E G, are linearisable if and 
only if the Brjuno condition (2.5) is verified. 

The meaning of Yoccoz's theorem is the following: if w verifies the Brjuno condition 
then all f E G, are linearisable, i.e. all germs of holomorphic diffeomorphisms of (C, 0) 
such that f'(0) = A = e2nio. Otherwise one can find at least one element of G, which 
is not linearisable. Therefore Yoccoz also proves that the set S := {A E S'JG, is 
a conjugacy class of G} = {A E S'JQ converges for all f E G,} is invariant under 
the action of the modular group PSL(2,Z) (cf Jones and Singerman (1987) for an 
introduction to the modular group), since if w is a Brjuno number and T E PSL (2, Z) 
then Tw is also a Brjuno number. We recall that two irrational numbers w and w' 
are equivalent if there exists an element T E PSL (2,Z) such that w = To'. This 
definition is equivalent to the condition that the continued fraction expansion of w and 
w' coincide but finitely many terms: o = [a,, . . . ,a,, co, c l , .  . . ] ,a '  = [bo,. . . , b,, c,, c l , .  . .]. 

In his proof Yoccoz first introduces a modified continued fraction expansion, then 
defines a function E : R \ Q -+ R' U (CO} which is even, Z-periodic, finite only if it is 
evaluated at those w which satisfy the Brjuno condition. Moreover if one normalises 
f E G, imposing the condition that f must be univalent (i.e. holomorphic and injective) 
in the unit disc D , ,  there exists a universal constant C such that if rs is the Siege1 
radius corresonding to any such f then 

where E(w)  is the Brjuno function. 
The function E ( w )  is obtained from the modified continued fraction as follows: let 

( ) and / I  /I denote respectively the nearest integer and the distance from the nearest 
integer of a real number, and let w be any irrational number. For all k 2 1 we define 

with initial data bo = (w), eo = lloll. Moreover, let B k  = nf=,ek if k 2 0, B-, = 1. The 
function E(w)  is defined by 

k=O 

Obviously B(w) = E ( w  + 1) = E(-o ) ,  and for all w E R \ Qn]O, 1/21 it verifies the 
following functional equation : 

B(o) = -log w + wE(o- ' ) .  (2.9) 

From this functional equation one can clearly deduce the behaviour of the Brjuno 
function under the action of the modular group PSL(2,Z) which is generated by 
w I+ w + 1 and w H l /w .  Since we will show in section 5 that the Brjuno function 
can also be used to understand critical functions for area-preserving maps such as the 
MSM and the SSM, its transformation properties under the action of the modular group 
should be taken into account if one wishes to understand the scaling properties of 
critical functions. This problem has been recently investigated by Buric et a1 (1989). 
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The function B(w) converges for all Diophantine numbers and for a class of 
Liouville numbers. In fact one can show (Yoccoz 1988) that there exists a constant C’ 
independent of w such that for all w E R \ Q one has 

(2.10) 

We can estimate, for example, that C’ I 38. 
Thus, the convergence of B(w) is equivalent to condition (2.5). 
In figure 2 we have plotted the values of exp(-B(w)) at 7000 uniformly distributed 

random w in the interval (0,i). We stress the close similarity to the plot of the Siegel 
radius as a function of w reported in section 3. 

Figure 2. The Brjuno function exp(-B(o)) at 7000 uniformly distributed random CO ; [0, $1. 

3. Estimates of the Siegel radius for polynomial maps 

From the knowledge of the coefficients Qk of the linearisation, applying Hadamard’s 
theorem, one can obtain estimates of the Siegel radius. Upper bounds are also provided 
by the Bieberbach-De Branges theorem (De Branges 1985) and the area formula for 
univalent functions (Pommerenke 1975), while lower bounds are usually obtained by 
means of (computer-assisted) KAM proofs (De La Llave and Rana 1986, Liverani and 
Turchetti 1986). 

All the methods mentioned above have serious shortcomings: upper bounds are 
rather accurate, but they usually require the computation of several thousand coef- 
ficients thus involving a considerable amount of numerical work. Lower bounds 
obtained analytically are very poor, and can be improved so as to be closer than 10% 
to the upper bounds only by means of computer-assisted proofs, which again need 
long computations on the computer. 

As we have suggested (Marmi 1988b), much more accurate lower bounds and 
estimates for the Siegel radius can be obtained by applying the following formula (3.1) 
(Herman 1987a). Moreover this can be generalised so as to consider Herman rings 
of rational functions (such as the Blaschke fraction) or entire functions (such as the 
complex sine-circle map) and compute the modulus of the annulus where the dynamics 
is conjugated to an irrational rotation (see section 4). 
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Proposition. Let f E G, be linearisable, A = e2niw. Let U be the Siege1 disc o f f ,  z E U ,  
z = @ ( w ) ,  where w E DrS,  IwI = r < r s .  Then 

1 m-l 
lim - 

m*+cc m log ~ f j ( z ) i  = logr. 
j =O 

If Pk/qk is a partial fraction of w 

(3.1) 

where var denotes the variation on the circle ( w I  = r .  

Proof: From (2.1) it clearly follows that f j ( z )  = f j ( @ ( w ) )  = ~ ( A ’ w )  for all j 2 0 and 
w E DrS,  thus 

On the other hand, since 0 is a conformal diffeomorphism of D,  onto U, with 
@(O) = 0, it has neither poles nor zeros but w = 0, so that, applying the mean property 
of harmonic functions to log l@(w) /wl ,  we find that 1; log dx = logr for all 
r I rs .  Noting that w H Aw is uniquely ergodic on Iw1 = I ,  by the ergodic theorem we 
obtain (3.1): 

1 1 m-l 
m-1 

lim - C log If j (z) l  = lim - log I@(Ajw)l = j log (@(re2niX)I dx = logr. 
0 m-rfcc m m++m m 

j = O  j = O  

For the convergence estimate (3.2) we proceed as follows. Without loss of generality we 
can suppose that 0 < w-pk/qk < l /qi .  Let 4 = [0, l / qk [ ,  Aj  =] j /qk ,  (j + l)/q,[for 1 I 
j I q k  - 1 ;  thus $;‘Aj = [0,1[. Consider the action of the translation T, by w on 
SI = R/Z: TAX, = xo + jo(mod1) E Ajpk(modqk) for all 1 s j I qk - 1. In fact we can 
assume for simplicity xo = 0 and we have 

As P k  and qk are relatively primes, the sequence {Ajpk(modqk)}j=O,,,,,qk-l is the same as 
{Aj}j=o,...,qk-l but with a different ordering and its union gives SI. Finally 

1 
I -var(log 1@1). 

qk 
QED 
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Morever, i f f  is entire and U is bounded, by taking the radial limit r + rS, one 
may show that for a.e. z E tJU with respect to the harmonic measure 

(3.3) 

We have shown (Marmi 1988b) the accuracy and efficiency of (3.3) to obtain estimates 
of the Siegel radius when applied to the critical points o f f  (i.e. to the points zo such 
that f'(zo) = 0). 

Numerical experiments show that there is usually a critical point of f on the 
boundary aU of the Siegel disc. Nevertheless Herman has constructed a (pathological) 
example of a germ f which has a Siegel disc and with the critical point outside its 
boundary. However no critical point can be contained in U because f l u  is injective, 
and from the classical theory of Fatou and Julia one knows that aU is contained in 
the closure of the forward orbit ( f k ( z o )  I k 2 0) of the critical points. Finally Herman 
himself has proved (Herman 1985) that, for the polynomial maps, 

f ( z )  = e2nioz + (l/n)z" (3.4) 

with o E Dioph and n 2 2, there is a critical point on d U .  
From now on we will specialise to germs of the form (3.4). 
In the special case of n = 2 and w EDioph with exponent ,u = 2 (irrational numbers 

with the continued fraction of constant type) Herman has also proved that aU is a 
quasicircle, i.e. the image of S' under a quasiconformal homeomorphism (Herman 
1987b). More recently (Shishikura 1989) it has been proven by means of quasiconformal 
surgery that the same is true for any polynomial map provided that U) is of constant 
type. In these cases, @ admits a quasiconformal extension to IwI = rs and is therefore 
Holder continuous (Pommerenke 1975) : 

I@(Wl) - @(W2)I I 41W1 - W211-' (3.5) 

for all w1,w2 E aD,,, where x E [0,1[ is the Grunsky norm (Pommerenke 1975) 
associated with the univalent function g(x) = r s / @ ( r S / x )  on 1x1 > 1. Therefore 
mimicking the proof of (3.2) one obtains 

and (3.3) now converges to logrsfor all z E d U ,  and in particular when z is the critical 
point. 

In tables 1 and 2 we have reported the estimates of the Siegel radius obtained 
by applying (3.3) to the orbit f q k ( z O )  of the critical point of the quadratic map when 
w = (4- 1)/2 = [l, 1,. . .] and w = 4- 1 = [2,2,. . .]. The convergence of the formula 
is rapid, and already after lo4 iterations the error is about 

In figures 3 and 4 we have plotted the sums l / m ~ ~ ! ~ ' l o g  If'(zo)[ against m for 
w = (a - 1)/2 and w = (m - 140)/2 = 0.007 1425.. . = [140,140,. . .]. Clearly 
the closer o is to a rational the longer it takes to the limit (3.3) to reach its asymptotic 
value. However we again remark that even in this case when m 2 lo4 the relative error 
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Table 1. Convergence of (3.3) to the 
Siegel radius: quadratic map z H 

e2niaz + fz', w = (Js - 1)/2. 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10 946 
17711 
28 657 
46 368 
75 025 
121 393 
196418 
317811 

1.OOOoooO 
0.707 1068 
0.668 7482 
0.639 2810 
0.637 6866 
0.637 6960 
0.641 1260 
0.643 6249 
0.645 9067 
0.6474112 
0.648 4952 
0.649 1861 
0.649 6446 
0.649 9325 
0.650 1168 
0.6502317 
0.650 3041 
0.650 3490 
0.650 3770 
0.650 3943 
0.650 4051 
0.65041 18 
0.6504160 
0.6504185 
0.6504201 
0.650 421 1 
0.6504217 

Table 2 Convergence of (3.3) to the Siegel 
radius: quadratic map z H eZnioz + $z2, w = 
&- 1. 

2 
5 
12 
29 
70 
169 
408 
985 
2378 
5741 
13 860 
33 461 
80 782 
195 025 
470 832 

0.707 1068 
0.638 5898 
0.636 9218 
0.641 4677 
0.644 9728 
0.646 7577 
0.647 5917 
0.647 9561 
0.648 1124 
0.648 1783 
0.648 2058 
0.648 2173 
0.648 2221 
0.648 2240 
0.648 2248 

0 bL$ 
5 

"10- 

Figure 3. Convergence of (3.3) to the Siegel radius 
for the quadratic map z H e2*'% + f z Z  when o = 
(4 - 1)/2 = [l, 1,. . .]. 

Figure 4. Convergence of (3.3) to the Siegel radius 
for the quadratic map z H + fz2 when w = 
[140,140, . . .I.  

is smaller than In figure 5 we have plotted the Siegel radius at 7000 uniformly 
distributed random w E [0,1] and in figure 6 the ratio exp(-B(o))/rs is plotted for 
the same rotation numbers. As (2.10) suggests, this ratio is uniformly bounded away 
from 0 and +a, since the Brjuno function has clearly extracted the divergence of l/r, 
at rational rotation numbers. 
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1 

I 1 c  

Figure 5. The Siegel radius for the quadratic map 
e2nio z + fz' at the same random w as figure 2. 

0 05 

Figure 6. The ratio exp(-B(o))/rs at 7000 uniformly 
distributed random w ; [0, i] for the quadratic map 

eZnio z + t Z ' .  

All in all this averaging formula gives very good results with a little computer time, 
and we will use it in the remaining part of this section to study the dependence of the 
Siegel radius on the arithmetical properties (i.e. the continued fraction) of the rotation 
number o for the polynomial maps (3.4). These maps have the critical points which 
are roots of z"-l = - e21ri0, are univalent on the unit disc D and the linearisation @ has 
the following structure: 

+m 

@(w) = @j(,-l)+l wj("-l)+l (Dl = 1 
~~ 

j=O 

i.e. it is a function of w"-l. In fact from the recurrence (2 .2)  for the coefficients, we 
have that, for all k 2 n, 

where A = e2rri0, and as 0/ # 0 for all 1 < k if and only if I = j ( n  - 1) + 1, we find that 
@ k  # 0 if and only if k = k ,  +. . . + k, = Q1 +. . . +j,)(n- 1) + n  = Q1 +. . .+in+ l)(n- 1)+ 1. 

This structure of the linearisation clearly explains the periodicity with period 
l/(n - 1) of the Siegel radius as a function of w. This is clearly illustrated for the cubic 
map (n = 3) in figure 7. 

In figures 8, 9 and 10 we have plotted the Siegel radius for the polynomial maps 
(3.4) of degree n = 2,3, ..., 10 b means of 30000 iterates of a critical point when 
the rotation number o = ( e p2  + 4 - p ) / 2  = [p, p , .  . .] as a function of p .  All these 
irrationals are quadratic, as they are solutions of 

1 
p + w =  -. 

0 
(3.10) 

For non-quadratic maps with n 2 3 rs is not a monotonic function of p ,  but it has 
a relative minimum when p = m(n - l),m E N. This is a consequence of the 'non- 
genericity' of these maps, and of the structure of the linearisation which is a power 
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""I I 

i 

Figure 7. The Siegel radius for the cubic map z I+ 

eznioz + )z' .  
Figure 8. The Siegel radius for polynomial maps z H 

eZnioz + i z "  when w = @ - p / 2  = [ p , p , .  .'.I 
and n = 2,3,4. 

series in w"-l. Indeed the only small divisors that appear in the recurrence for the 
coefficients of @ are 

lP-')+' - AI = 21 sinG(n - 1)nrro) - Ilj(n - 1)oII 
and amongst these the most important ones occur when j ( n  - 1 )  = qk, i.e. the 
denominator of a partial fraction of a. For general p this is a rare event, but when 
p = m(n - l) ,q2k-l  = jk (n  - 1) for some jk E N, i.e. 'half the small divisors which 
effectively appear in the recurrence (3.9) coincide with a 'quasi-resonance' due to a 
partial fraction of U.  In fact q1 = p ,  q3 = p 2  + 1 and by induction, assuming that 
q2k-l = jk(n - 1 )  and q2k-3 = jk-l(n - 11 ,  one has 

2 q2k+l = Pq2k + q2k-1 = P q2k-1 + 2 W 2 k - 2  + q2k-3 = (n - l)(P2jk + 2q2k-2m +jk-l)* 

When p + +a the Siegel radius converges to zero as expected, approximately 
according to the power law tS - ( l /p ) ' / ("- ' ) .  
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If one estimates the Diophantine condition constant y defined by 

1 
Y,-- P 

for the quadratic irrationals solutions of (3.10), one has from KAM proofs (Marmi 
1988a) of Siegel’s theorem that 

where c is some universal constant, which is in agreement with the numerical evidence. 
Furthermore, Yoccoz’s inequality (2.6) suggests that for generic maps 

where C(o) is uniformly bounded away from 0 and +a. For the quadratic irrationals 
solutions of (3.10), by applying (2.9), one immediately has that 

+oo log w 
0 - 1  k=O 

if p 2 2, so that one expects that for the quadratic map, in the limit p -+ fco ,  i.e. w + 0 

This estimate is again in agreement with the numerical results. 

4. Rational and entire maps of C: Herman rings and estimates of the analyticity strip 

I f f  is a rational fraction, f ( z )  = P ( z ) / Q ( z )  where P and Q are polynomials, f defines 
an endomorphism of the Riemann sphere = C U (00). Its degree d is the number of 
pre-images f - I  ( z )  counting multiplicities, and it is equal to max(deg P, deg Q)  if P and 
Q are relatively primes. From the Riemann-Hurwitz formula f has 2(d - 1) critical 
points (counted with multiplicities). 

From Sullivan’s classification theorem one knows that all the stable regions are 
eventually cyclic and of one of the following types: attractive and superattractive 
basins, parabolic basins, Siege1 discs and Herman rings (figure 11). In these last two 
cases the dynamics is conformally conjugated to an irrational rotation 
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-8 - 4  0 4 8 
Re z 

Figure 11. Herman ring associated with the sine-circle map (4.10) for E = 0.2 and w = 
(JS - 1 ) P .  

respectively on the unit disc D and on an annulus A, := {z E Cll/r < IzI < r}, r > 1. 
By the maximum principle i f f  is a polynomial it never has Herman rings, thus we will 
restrict ourselves from ,now on to the case deg Q 2 1. 

The boundary aV of a Herman ring V ,  as well as the boundary of a Siege1 disc, is 
contained in the closure of the forward orbit of the critical points. Herman has also 
proved (1985) that if o E Dioph and f 17 is injective, then on each of the two boundary 
components of V there exists at least one critical point o f f .  

A simple example of a rational map with a Herman ring is provided by the Blaschke 
fraction 

z - a  
1 - az 

f a  : 2 - z 2 -  

where a E R. When a ~]3,+cc]  f a  induces a diffeomorphism of S’, and the critical 
points different from 0 and cc are given by 

Clearly z+z- = 1 and lima-,3+ z+ = lima++ z- = 1. For each w E R \ Q one can choose 
t E R such that the rational function 

f a  
. e2nit 

fa,, * (4.3) 

has a rotation number exactly equal to o. 
For each fixed value of o in the limit a -+ +cc the map (4.3) tends to the 

rotation R, uniformly on every annulus. From Arnol’d’s theorem (Arnol’d 1961) on 
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the conjugation of circle diffeomorphisms with rotations and further developments 
and refinements (Russmann 1972, Herman 1979, Yoccoz 1984) one knows that if the 
denominators qk of the partial fractions of o verify the following condition 

(4.4) 

then for sufficiently large a the map f,,, is analytically conjugated to the rotation R, 
on an annulus A ,  containing s'. 

Clearly (4.4) is a weaker condition than o E Dioph but stronger than forcing o to be 
a Brjuno number (2.5). Until recently it was not known whether the Brjuno condition is 
also sufficient in this case. By adapting his proof for the case of Siege1 discs, in a recent 
unpublished work Yoccoz has proved that the Brjuno condition is in fact a necessary 
and sufficient condition for the linearisation of analytic circle diffeomorphisms close 
to an irrational rotation, whilst for the general case the rotation number must fulfill 
an additional set of rather technical conditions needed for implementing a reduction 
procedure to the previous case. 

For each fixed value of a one has a critical function K ( o , a )  which is just the 
radius A ,  of the maximal annulus on which j , , ,  is conjugated to the rotation (i.e. 
the conformal image of the Herman ring V through the conjugacy). By adapting the 
argument given in the last section one has again an efficient tool for computing this 
critical function. 

If we map the annulus A ,  on the strip I ,  := (8 E CII ImBI I q } ,  with q = logr, we 
have that the map fa,, is conjugated to the irrational translation 

T, : 0 - 8 + w  (4.5) 

through an analytic map en : I ,  --t V :  

For all z E V one has, therefore, 

= ,is(@) = ei(@+~(6))  (4.7) 

where 8 E I ,  and cp := (0 - identity is a periodic function with zero average. 
From (4.6) it clearly follows that, for all j 2 1, 

Replacing 0 = ( + i6 with t , 6  E R, 161 c q,  and using the fact that the irrational 
translation T, is uniquely ergodic, since cp has zero mean we obtain 

1 m-' lim - log If;,, ( z )  1 = -6, m++m m 
j=O 
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If one chooses the initial point z = z-, i.e. a critical point of the map, and makes use 
of the fact that when w is Diophantine it is conjectured (Shishikura 1987) that the 
critical points belong to aV and that aV is a quasicircle, by the same argument given 
in the previous section one can extend the validity of (4.8) to all the points z on the 
boundary, including the critical point, so that 

In figure 12 we have plotted q at 2000 uniformly distributed random o when 
a = 20, computed by means of (4.9) applied to the first 50000 iterations of the critical 
point. We remark the close similarity with the other critical function plots in this 
article. In figure 13 the ratio exp(-B(w))/q is plotted at the same value of a and 
for the same w. The picture shows clearly that the Bjuno condition is a sufficient 
condition for the existence problem of Herman rings for the Blaschke fraction (4.2) in 
agreement with Yoccoz's work. 

I I 

Figure 12. The width of the Herman ring of the 
Blaschke fraction (4.2) when a = 20 at 2000 values 
of w ; [O, 11. 

Figure 13. The ratio exp(--B(o))/q at 2000 uniformly 
distributed random o ; [0, !j] for the Blaschke frac- 
tion (4.2) when a = 20. 

The same analysis can be carried for the sine-circle map 

g,, : z H z + t + E sin(z) (4.10) 

where z E C and t is chosen in such a way that w is the rotation number of ge,m. 
Again, from Arnol'd's and Yoccoz's theorems one knows that for E small enough g,, 
is analytically conjugated to T, on a strip I,, around the real axis, provided that w 
verifies the Bjuno condition (2.5). 

For 0 I E -= 1, if one maps the real line onto S' by means of the exponential 
mapping w = eir, (4.10) induces an analytic diffeomorphism of S' and has a Herman 
ring V surrounding it. The critical points are solutions of the complex equation 

1 + ECOSZ = 0 

from which it readily follows that zi = U +_ io, where 

l fdl-E2 
U =  ( 2 k +  1)n k~ Z and u=log  

E 
(4.1 1) 
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Clearly lime& Im z+ = 0 and one can numerically verify that the two images w+ = e"'* 
of the critical points-indeed each belong to one of the two connected components of 
the boundary i3V of the Herman ring associated with (4.10). The argument which leads 
to (4.8) also establishes that for all w = eiz E V ,  if z is the image of 0 = 5 +id E I ,  
under the conjugacy 

(4.12) 

Moreover if one assumes that the critical points belong to the boundary of the Herman 
ring, and that it is a quasicircle, by taking radial limits 

where q is again the logarithm of the radius r of the 
ring is conformally equivalent. 

one finds 

(4.13) 

annulus to which the Herman 

-In figure 14 we have plotted t f  as a function of E when the rotation number is 
kept fixed with w = (A - 1)/2 computed by means of (4.13) through the sum of the 
first 46 368 iterates of the critical point z-. As expected q is monotonously decreasing 
with E and vanishes when E = 1, i.e. when the critical points zk reach the real axis: 
this corresponds in fact to the situation when the Herman ring V is reduced to S' 
only, since the two components of i3V existing for E < 1 now have critical points (and 
therefore all their images) in common with S'. We also remark that for the same 
reason when E = 1 the map (4.10) acting on S' is not a diffeomorphism any more 
(critical circle map). For more information about the critical sine-circle map we refer 
the reader to Shenker (1982) and Feigenbaum et a1 (1982). 

5. Complex area-preserving maps 

Consider an area-preserving map and denote by K the perturbation parameter, so that 
when K = 0 the phase space is completely foliated into invariant circles. Each invariant 
circle is uniquely determined by its rotation number w. From converse KAM theory 
(Mather 1984, Mackay and Percival 1985) one knows that there exists a critical value 
K = K ( w )  at which the invariant curve with rotation number w is destroyed. 

The critical function K = K(w) has been studied for some complex area-preserving 
maps by various authors (Greene and Percival 1981, Percival 1982, McGarr and 
Percival 1984, Percival and Vivaldi 1988, Malavasi and Marmi 1989). These maps 
show most of the relevant features of real maps, but the study of perturbation series 
which parametrise the invariant circles is considerably simplified both algorithmically 
(recursive relations for the coefficients are very simple) and numerically (the series are 
absolutely convergent, so that, quite differently from real area-preserving maps, no 
subtle cancellations are responsible for their convergence). 

We will show in this section using two models, the modulated singular map (MSM) 

Ke2nino 
Y,+l = Y ,  + - x, - 1 %+I = xfl + Y,+l 
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amd the semistandard map (SSM) 

that for complex area-preserving maps the Brjuno function also gives a good approxi- 
mation for the critical function. More precisely we will first prove that convergence of 
B ( o )  is a sufficient condition for the existence of an invariant circle in the MSM and 
the SSM. Then we will make use of Yoccoz's theorem to conjecture that for both these 
maps K ( w )  x exp[-2B(w)], and we will verify this result on the SSM (as for the MSM 
we refer to Malavasi and Marmi 1989). 

Assume that w E R \ Q is a 'strongly irrational' rotation number, so that a 
corresponding invariant circle exists for 0 I K I K ( o )  (for the MSM we consider 
invariant circles with a rotation number equal to the frequency of the modulation). 
Then the map (MSM or SSM) is analytically conjugated to the rotation 

where 8 E R/2nZ is an angle variable parametrising the invariant circle. This means 
that there exists a function @(z) ,  holomorphic in the disc DK(w),  such that for the MSM 

Y , + ~  = y, + iKeIXn x,+1 = x, + Y,+l (5.2) 

z,+l = e2niw z , 2, = Keien (5.3) 

x, = @(z,) 

y, = x, - x,-~ = -i[@(z,) - @(z,-~)] + 2x0. 

(@(z)  - l)(B2@)(z) = z MSM (5.6) 

(d2@)(z) = -zexp[@(z)] SSM (5.7) 

( s 2 @ ) ( z )  = @(eZnioz) - 2@(2) + @(e-2niwz). 

D, := 12sin(xno)12 n 2 1 (5.9) 

(5.5) 
The conjugation function @(z) can therefore be expanded into a convergent power 
series @(z)  = 1;: @,z", and must verify the functional equation 

and 

where 

(5.8) 
In order to find the recurrence which defines the coefficients of @(z) we define 

which gives the (small) divisors sequence for both MSM and SSM. 
By matching powers in (5.6) and (5.7), one easily finds that for the MSM 

(5.10) 

and for the SSM 

In both cases the critical function K ( o )  is obtained by means of Hadamard's formula: 
since all the @, are positive real numbers we can drop the absolute value and 

The main analytical result of this section is summarised by the following. 
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Theorem. A sufficient condition for the existence of an invariant circle in both the 
MSM and the SSM is Brjuno's condition (2.5) 

Moreover one has the following inequalities : 
+a, 

logK(o)  2 -log2(1+ d) - 4 c  - logqk+l MSM 
k=O qk  

logK(o)  2 - - l o g - - 4 1 -  21 log q k + l  

k-0 qk 4 
SSM. 

(5.13) 

(5.14) 

By adapting an argument given by Yoccoz one can also show that if the Brjuno 
condition is violated, i.e. B ( o )  = +CO, then the series (5.11) diverges, thus proving 
that the Brjuno condition is necessary and suflcient for the existence of the analytic 
invariant curves of the SSM which admit the parametrisation given by (5.3), (5 .5 )  and 
(5.11). This is done in the appendix. 

ProoJ Clearly (5.13) and (5.14) imply the first statement of the theorem. From (5.12) 
1 
n 

so that in order to show (5.13) and (5.14) it suffices to prove that 

- log K ( o )  I SUP - log 0, 

+a, 

n 

where C = log 2(1 + a) for the MSM and C = log $ for the sSM. 
The proof is based on the majorant series method of Cauchy. For all n 2 1 let 

E, := 1 sin(nnw)12. (5.15) 
If 1 1 . 1 1  denotes the distance from the nearest integer, llyll := min,,, Iy + P I ,  since 
2x I sin(lcx) I n x  for all x E [0, 51, one immediately has that 

(5.16) 
According to Siegel's ideas (1942) we introduce the following sequences: 

1 2 E ,  2 41(nolj2. 

n- 1 

and 

(5.17) 

(5.18) 

which will be used to obtain a majorant series of the conjugation function of the MSM, 
and for the same purpose, with respect to the SSM conjugation function, we define 

n 

a; = 1 a:, = c a;, . . .  a;J n 2 2  (5.19) 

and 

max max S;, ... d i J  n 2 2. (5.20) 
1 d:, = - 1 

E1 
6; = - 

E,  2sjsn k l +  ...+ k,=n 

With these definitions we have the following lemmas. 
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Lemma 1. The coefficients @, of the power series expansion of the MSM conjugation 
function verify the inequality 

@, I a,6, for all n 2 1 (5.21) 

and for the SSM 

a,, I for all n 2 1. (5.22) 

Proof of lemma 1 .  First we prove (5.21). From the definitions (5.10), (5.17) and (5.18), 
since D, = 4~,, Q1 I l / ~ ,  = ala1; by induction 

To prove (5.22) we first define the sequence b ,  = l / q ,  

(5.23) 

and we show that from (5.11) one has 

@, I b, for all n 2 1. 

In fact a), I l / c l  = b,  and, since = 1/D, 2 f ,  by induction we have 

From the definitions (5.19) and (5.20) of a; and 8; one has b ,  = aid; and one can 
immediately check by induction that b, I a;dA. This completes the proof of lemma 1. 

QED 

By this lemma, to prove our theorem it suffices to show that 

g log a, + log 8, S log 2(1+ A) + 4cl=", % MSM 

SSM. log a; + log 6; I; log $ + 41120 

The contribution from a, and U; is the trivial constant term. In fact the key idea of 
Siegel's method is that these sequences keep track of the contribution to the growth 
rate of @,, coming from the structure of the recurrence, i.e. the algorithm, disregarding 
the small divisor problem, i.e. setting D, = 1 in (5.10) and (5.11). Thus one finds 
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that the origin of the divergence of the series is in fact purely number-theoretical (see 
also the appendix where this is proved for the SSM), in contrast to what happens, for 
example, for Birkhoff series of symplectic maps (Bazzani et a1 1989). The sequences 6, 
and 6; extract the small divisors contribution from the series. 

By the very definition of cr, and crh, if we let f(z) = cl2 0,z" and g(z) = xflz1 Q,Z 

we find that f and g verify the functional equations 

and 

+CO t n 

f ( z )  = z + c f ( Z ) l 2  

which can be readily solved 
1 - 4 1 - 4 ~  

2 f ( z )  = 

and 
l + z - 4 i T G 7  

4 g(z) = 

Therefore j converges for /zI e 1/4 and g converges for I z (  < 1/7, and by Cauchy's 
estimate 

1 + JZ,, 
0, I 4" max If(z)I I ~ 

IW 114 2 
(5.24) 

(5.25) 

We now consider 6, and 6;. Here we essentially repeat Brjuno's arguments (Brjuno 
1971 and 1972): we also refer to Herman (1987a) and Poschel (1986) for some very 
readable expositions and for applications of Brjuno's method to the Siege1 theorem. 

In (5.18) and (5.20) the maximum is attained for some decomposition 

where 1 5 j, I n - 1 (5.26) 
1 6 = - 6 . 6  . 

n &, In ,-I. 

and 

6' = -6' k; . . ";. where 2 I j' I n, k;  + . . . k;. = n. (5.27) 

Decomposing 6,, hflPjn and ai;, . . . , 6;. in the same manner, and proceeding like this we 
will finally obtain some well defined'hecomposition 

1 
8, 

I ( , )  

6, = n E;' where E ; ,  = E,, 1 I i ,  I , , . I iI(,,) s n - 1 (5.28) 
k= 1 

and 

k=l 

Lemma 2. 
I'(n) 5 I(n) = 2n - 1.  (5.30) 

Moreover 1 ( 1 ,  n) := card(k = 1,. . . , I(n) I ik = l }  = I'(1, n) := card(k = 1 , .  . . , l ' (n)  I i; = 
1) = n. 
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Proofof lemma 2. 
induction, for n 2 2 from (5.26) one has 

As 6 ,  = 6; = 1 / q  one has l(1,n) = l’(1,n) = l(1) = l’(1) = 1. By 

I( 1, n) = l(  1, j,) + I (  1, n - j,) = n 

l (n)  = 1 + I & )  + l ( n  - j,) = 1 + 2j, - 1 + 2n - 2j, - 1 = 2n - 1 

and from (5.27) 

I’(1,n) = l’(1,k;) + ... + l’(l,k;.) = k;  + . . .  + k;. = FI 

I’(n) = 1 + I’(k;) + . . . + l’(k;.) I 2(k; +. . . + k;.) - j’ + 1 I 2n - 1 

since j’ 2 2. This completes the proof of lemma 2. QED 

We now consider the function i2 : N \ (1) + R+ defined as follows: for all m 2 2 

(5.31) 

Clearly i2 is non-increasing and, since CO E R \ Q, limm,++a: n(m)  = 0. 
By the ‘law of best approximation’ of irrational numbers from their partial fractions 

(we refer, for instance, to Schmidt 1980, p 21) if 1 5 q I q k ,  ( p , q )  # ( p k , q k )  and k 2 1, 
where P k / q k  is a partial fraction (2.3) of U, 140 - pI > lqkw - Moreover if 
(p, q)  # (Pk-1 ,  q k - l ) ,  Iqw - P I  > l q k - l W - P k - 1  I .  Therefore i2 is piecewise constant, so that 
R(qk-1 f 1) = n(4) = i 2 ( q k )  > Q ( q k  + 1) for all q k - 1  + 1 4 I q k r  and by (2.3) One has 

(5.32) 

The main idea in Brjuno’s method is to count the number of terms in the decompositions 
(5.28) and (5.29) of 6, and 6; which are smaller than 4n(m) for a given m 2 2 (the 
factor 4 is due to (5.16)). 

Lemma 3. 
card{k = l , . .  , , l ’ ( n )  in (5.29) I E’; 

Let N,(n) := card{k = 1, ..., l (n )  in (5.28) I eik < 4Q(m)} and NA(n) := 
4R(m)}. Then 

where [ ] denotes the integer part. 

Proof of lemma 3. We prove the statement for Nh(n), since the proof for N,(n) follows 
the same scheme. 

By (5.29), if n c: m, m 2 ih + 1 for all k = 1,. . . , I’(n). Thus from (5.16) we have 

E’; = 1 sin(ni;o)12 2 4\li;w\12 2 4 ~ ( i ;  + 1) 2 4 ~ ( m )  

because $2 is not increasing. Therefore N;(n) = 0, 
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If n = m, for all k = 2 , .  . , , /’(n), i; I n - 1 = m - 1, so that by the same argument 
used above 

E’; 2 4n(ih + 1) 2 4R(m). 

One is only left with the possibility that E’; = E, < 4R(m), and Nk(m)  I 1. 
We now proceed by induction on n. Let n > m: two cases are possible. 

Case 1 : E, 2 4n(m). Then by (5.27) and the induction hypothesis 

as k; + . . . + k;. = n, [XI + lv3 I [x + y] and j’ 2 2. 
Case 2 : E, < 4R(m). Then 

Nh(n) = 1 + N k ( k ; )  + . . . + Nk(k,:.) I 1 + 2 - - 2 = 2 - [:I [:I - l .  
This completes the proof of lemma 3.  QED 

We can now complete the proof of the theorem. We define the sequences of index 
sets Z(0) := (k = 1,. . . , l ( n )  in (5.28) 14R(q1) I qk < l}, Z(m) := (k = 1 ,..., l(n) in (5 .28)  
14R(qm+l) I E ~ , ,  < 4Q(qm)}, and similarly I’(0) and Z’(m) by replacing (5.28) with (5.29) 
in the definition. The sequence (4k)l: is the sequence of the denominators of the 
partial fractions of o. Clearly u;t;20ibr(m) = u;t;z0Z’(m) =IO, 11; by lemma 3 if m 2 1 

(5.34) 

and 

card Z(0) I 2n - 1 card Z’(0) I 2n - 1. 

Thus, by (5.28) and (5 .32)  

(5.35) 
1 1 

5 4 - log 4m+l 
n k = l  n 4*(4m+~) m=O 4 m 

and analogously from (5 .29)  and (5.32) one has 

(5.36) 

Combining (5 .35)  together with (5.24) one immediately gets for the MSM 

which completes the proof of (5 .13) ;  from (5.36) and (5.25) we find for the SSM that 

which establishes (5.14). The theorem is proved. QED 
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As it is rather evident, the reader can adapt the proof given above of estimates 
(5.13) and (5.14) to the recurrence (2.2) for the conjugacy of the Siegel problem, thus 
obtaining that 

(5.37) 

where e is a constant independent of o. 
In the Siegel problem the small divisors \An - %I have the form 

*E, = & = 1 sin(n(n - l)o)(. (5.38) 

due to the fact that the functional equation (2.1) is a first-difference equation whereas 
(5.7) and (5.8) are second-difference equations. Their contribution to the groyth rate 
of the majorant series of the linearisation, which comes through a sequence 6, which 
is defined in (5.20) replacing E,  with Ê,,, is clearly half of that coming from the divisors 
E,  for the MSM and the SSM. 

Because of this close analogy, the result (2.8) of Yoccoz (1988) for the Siegel 
problem, together with (2.10), suggests that the factor 4 on the RHS of (5.13) and (5.14) 
can be replaced by 2, so that one is naturally led to conjecture that 

for the MSM, and 

(5.39) 

(5.40) 

for the SSM, where CM (w)  and C, (w)  are positive continuous functions, bounded away 
from 0 and +cc uniformly in o. 

It has been shown (Malavasi and Marmi 1989) that the conjecture is numerically 
well verified for the MSM. For what attains the SSM in figure 15 we have plotted 
the critical function K ( o )  at 5000 uniformly distributed random rotation numbers 
w E [0, f] computed by applying Hadamard’s formula (5.12) to @500. In figure 16 we 
exhibit the ratio Cs(o) = e-2B(W)/K(w) at the same values of w :  the ratio is clearly 
bounded away from 0 and +cc and has corners at the rationals, thus supporting the 
validity of our conjecture also for the SSM. 

One might wonder now if one can improve lemma 3 so as to have N,(n)  I [n /m] -  1 ,  
thus establishing that l/nlog 6, I 2 CtS(l0g q k + l ) / q k  and the validity of (5.39) and 
(5.40). Yoccoz’s proof of (2.8) does not make use of the majorant series method 
but rather analyses the behaviour of the Siegel radius under the action of w H l / w  
which is one of the two generators of the modular group and which also produces the 
continued fraction expansion. His proof is in some sense related to the renormalisation 
group approach (see, for instance, Mackay 1983) but exploits the analytic nature of 
the problem and makes heavy use of the uniformisation theorem for Riemann surfaces 
and distortion estimates for univalent functions. These powerful techniques are not 
available, however, for the study of real Hamiltonian systems and symplectic maps. 
Yoccoz himself therefore remarked that it would be interesting to know if the majorant 
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Figure 14. The width of the analyticity strip as a 
function of E for the circle map (4.10) when o = 
(v5 - 1)/2. 

I 
O 0.5 

Figure 16. The ratio Cs(w) := exp(-2B(w)/K(o) 
for the SSM at the same w of figure 15. 
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Figure 15. The critical function of the SSM at 5000 
uniformly distributed random rotation numbers w ; 
to, 1/21. 

Figure 17. r6 is the convergence radius of zG &z" 
computed by applying the Hadamard's fonnula to 
6200. The ratio exp(-4B(w))/rs is computed at 2000 
uniformly distributed random w .  

series method (in the version of Siegel and Brjuno) is, in fact, optimal with respect 
to the dependence of critical functions on the rotation number, i.e. if one can prove 
(2.6), (5.39) and (5.40) by that approach. This would also imply that the passage to 
absolute values does not affect the convergence radius of the series and would suggest 
the possibility of extending results of this kind to other, physically more interesting, 
problems where the majorant series can be used. 

In order to attempt to answer this question we have computed numerically the 
first 200 terms of the sequence 6, for the MSM at 2000 uniformly distributed random 
o E [0,1/2]. In figure 17 we exhibit the ratio between exp(-4B(o)) and the radius 
of convergence of the series 6,z" estimated by applying Hadamard's formula to 
~ 5 ~ ~ .  The result is clearly a function which is uniformly bounded away from 0 and 
+CO, continuous with corners at rational o, whereas the ratio with exp(-3B(o)) or 
exp(-2B(w)) diverges when o is close to a rational. 

Our numerical study suggests therefore that the majorant series method of Siegel 
and Brjuno cannot give the optimal dependence of critical functions on the rotation 
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number, in the sense of allowing for a proof of our conjectures, even if the Brjuno 
condition is actually the optimal one for the problem of existence of analytic invariant 
curves, as it is proven in the appendix for the SSM. 

On the other hand, KAM superconvergent methods do not use the continued 
fraction expansion of o but only the coefficients appearing in Diophantine conditions, 
whereas the only other methods which exploit the algebraic nature and the scaling 
properties of the critical functions are the renormalisation group (Mackay 1983) and 
the modular smoothing technique (Buric et a1 1989). We think that our study, even 
if this last negative result is discouraging as far as the goal of a complete rigorous 
characterisation of the critical functions is concerned, nonetheless shows that a rather 
complete analysis can be made, at least as far as one considers complex dynamical 
systems. 
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Appendix. Divergence of the conjugation function for the SSM when the Brjuno condition 
is violated 

Following section 5 the conjugation function CP of the sSM verifies the recurrence 

where 

gives the small divisor sequence. 
We remark that the following scaling relation holds: 

where the new coefficients 8, verify the recurrence 
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and the small divisors are given by the same sequence E, used in the proof of the 
theorem of section 5:  

E ,  := 1 sin(nnw)l2. ( ' 45 )  

Let o be irrational but not verifying the Brjuno condition, i.e. E ( o )  = +CO, or 
equivalently (log q k f l ) / q k  = +a. We denote by Pk/qk its corresponding partial 
fractions, and A := { q k  1 qksl 2 (qk + 1 ) 2 ) .  Since the Brjuno condition is violated by o 
from (5.16) and (2.3) one clearly has that 

On the other hand, since Ek 2 qi+l ,  

1 

and A must be infinite. If we denote the elements of A by q; < q/1 < . . . < 4;: 

The divergence of the conjugation (Al)  immediately follows from the following lemma. 

Lemma 4.  For every k 2 0 one has the following estimate 

where a is a positive k-independent constant. 

In fact from (A7) one has 

1 lim sup - log m, = a -+ lim sup - log m, = +CO. 
n++oc n n++x n 

Proof of lemma 4. The proof is adapted from an argument given by Yoccoz (1988) for 
proving the divergence of the majorant series used for the quadratic map in the Siege1 
problem when the Brjuno condition is violated. 

First of all we remark that the sequence (b,)nEN is non-decreasing: 4, 2 bn-l/e,, 2 
b,-,. Moreover one can easily check by induction that for all i and s non-negative 
integers 

Let k 2 0 and 
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Applying (A8) to hq;+l one has 

Now, let ak := nkq;/q;+, and observe that the infinite product U;=",., < f c o  since 
(4;  + 1 ) 2  I qb+l , which implies c i k  2 [l - l/(q; + 1)]*. Using this property of the 
sequence ak one finds 

The lemma is therefore proved, and a := uk. QED 
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